Telescope Power Box

Telescope power distribution box
A 12V distribution box for a telescope

I changed the telescope control computer from a Mac Mini to a Raspberry Pi 4B. With the Pi, I added another wall wart to the already large collection. There is one for the telescope, one for the camera, one for the filter wheel, one for the focuser, and one for the flat fielding box. Now one more for the Pi. It takes more than one outlet strip to fit them all. I went with the Pi to simplify, but to really simplify I needed to get rid of as many wall warts as I could. To that end, I bought a 12V 11.5A power brick that can handle all of the various devices at the same time.

To power the Pi, a DC-DC converter is hung off of the 12V line and converts that to 5V @ 4A. Both power supplies are regulated, because the camera and the Pi need well regulated power. The telescope, focuser, filter wheel and flat box will run on about anything 12V-ish. I picked up the power supplies and the mating mini-DIN at Mouser.

The box is a Context Engineering 6" x 4" x 1.5" aluminum box that I found at Fry's Electronics years ago. A Twin Industries 8000-45 4" x 5" perfboard fits perfectly in the card slots. With the perfboard's 0.037" holes, the 5V converter is a snug fit, but it works.

There isn't really a schematic, since everything is just +12V to +12V, ground to ground. I used bus wire and red/black primary wire for all of the internal wiring. The external wiring is round white 22ga. cord, except the Pi output, which is a USB-C cable. The outputs are on 2.5mm x 5.5mm jacks, and the plugs have screw locks on them to keep them from falling out. The other ends of the 12V power cables have the appropriate size (2.1mm x 5.5mm or 2.5mm x 5.5mm) connector. The 5V output uses a USB-C connector to support the USB-C cable required by the Pi 4B. I used a USB-C breakout board from Amazon to accommodate the USB-C cable. It is a knockoff of the Sparkfun USB-C breakout board. They came in pairs, which was attractive because I had no idea how easy or hard it would be, or how many tries it would take to do the USB-C.

There are 1µF ceramic capacitors and 1000µF electrolytics for each of the six outputs.

Key Parts List:

GST160A12­R7BMeanwell 12V 11.5A power supply55.11
MDS20A­05Meanwell 5V 4A DC-DC converter38.15
KPJX­PM­4S­SKycon locking mini-din socket3.21
-Locking 2.5mm x 5.5mm DC barrel plug and socket mdflyelectronics (ebay) 6 pcs20.00
8000-45-LFTwin Industries PTH perfboard12.75
4006H-6BContext split-body aluminum enclosure 6.0" L x 4.13 W x 1.5622" H23.95
-Flashtree USB-C female breakout 6-pins 2pcs10.99

USB-C power connection

The Raspberry Pi is apparently not "smart" when it comes to the USB-C power delivery handshake. Fortunately it takes all of the power it needs, regardless of the state of CC1 and CC2, so only the Vbus and Gnd connections are required. The voltage at the output of the DC-DC converter is 5.002V under load. With a high quality 6 foot cable the voltage at the GPIO header on the Pi is 4.74V which is below the 4.75V minimum, and it doesn't reliably boot. With a high quality 3 foot cable it is 4.88V. A six inch cable yields 4.96V at the header, and is actually the right size for this particular project.

Telescope power distribution box insides
Inside the 12V distribution box

The wiring between the board and the lid uses screw terminals, so I don't have to un-solder all of those wires to remove the lid. You can't see the USB-C board - it is behind the panel. The DC - DC converter is also hidden. It is upside down under the board. The top of the converter rests on the inside of the bottom of the case, to help cool the converter. It gets a little warm when the Pi is actually doing something. The perfboard is 1 inch shorter than the case, so to keep it from moving I put a couple of dabs of hot glue in the slots.

So at the scope I've replaced two outlet strips, five wall-warts and a Mac mini with this box, one power brick and a Raspberry Pi. Thoreau would be proud.